Pulmonary Disorders and Pulmonary Rehabilitation

Chris Garvey FNP, MSN, MPA, FACVPR

Manager, Seton Medical Center Pulmonary and Cardiac Rehabilitation Nurse Practitioner, University of California San Francisco Sleep Disorders, Pulmonary Division

Overview

- Chronic Lung Diseases
 - Chronic Obstructive Lung Disease (COPD)
 - Asthma
 - Mycobacterium Tuberculosis
 - Restrictive Lung Diseases
- Pulmonary Rehabilitation
 - Key Components
 - Exercise Guidelines
 - Education on Disease Self-management
 - Evidence Based Guidelines
- Resources

COPD Definition and Incidence

Airflow limitation – not fully reversible

- Persistent, progressive dyspnea and chronic cough
- History of smoking or particulate exposure
- Significant systemic abnormalities
- WHO: 340 million with COPD worldwide
 - National COPD prevalence ranges: 4-20%
 - 70% of patients are under 65 years old
- 6th leading cause of death worldwide
 - Will be 4th leading cause by 2030
 - Worldwide deaths will increase 30% in 10 years¹
- Often undiagnosed and untreated until advanced²
 Nearly 80% undiagnosed and untreated³

¹World health report 2002;reducing risks, promoting healthy life. <u>www.who.int/whr/2002</u> ²NHANES III, Mannino et al, MMWR 2002;51:1-16 ³Buist AS, McBurnie MA, Vollmer W, et al. BOLD Study. Lancet 2007;370(9589):741-750.

COPD in Korea

Korean National Health & Nutrition Examination Survey

 9,243 adults over 18 years: COPD prevalence based on spirometry in those over 45 years old: 17%;

Kim DS, et al. Prevalence of COPD in Korea; a population-based spirometry survey. Am J Respir crit Care Med 2005; 172:842-847.

- Asia Pacific Round Table Group: Korea COPD prevalence based on spirometry in persons over 45 years: 25.8% Asia Pacific Roundtable Group, Respirology 2003;8:192-198
- Korean Health and Genome Study:
 - 8140 without pulmonary diagnosis
 - Undiagnosed airflow obstruction:
 - 12% in men, 3.5% in women
 - Airflow obstruction common in men with respiratory symptoms - chronic cough, chronic sputum, wheezing, dyspnea, and smoking C Shin, et al. Respiratory symptoms and undiagnosed airflow obstruction in middle-aged adults. CHEST 2004;126:1234-1240.

Characteristics Asthma and COPD

Reversible (Improvement) on Spirometry after bronchodilator Variable symptoms

Not fully reversible on spirometry Persistent symptoms with exacerbations

ymphocyte

Neutrophil

COPD

Noxious irritant e.g., cigarette smoke

Macrob

hade

CD8+

Long acting bronchodilators reduce dyspnea, hyperinflation

Modified from Barnes, 1998.

Diagnosis of COPD

SPIROMETRY

EXPOSURE TO RISK FACTORS

tobacco

occupational dust and chemicals

indoor/outdoor pollution

SYMPTOMS cough sputum dyspnea

Hyperinflation and Air Trapping

COPD - Abnormalities

Pulmonary Impairments:

- Hyperinflation trapped air causes dyspnea
 - Increases with exercise
- Impaired ventilation hypoxia, hypercapnea

Secondary Impairments:

- Skeletal muscle dysfunction
- Underweight or overweight
- Osteoporosis
- Depression, anxiety disorders
- Heart disease
 - Heart failure, Pulmonary hypertension
- Anemia

Cross section thigh Bernard S, et al AJCCRM 1998

Undiagnosed Airflow Limitation in Cardiovascular Disease

Airflow limitation in hospitalized patients

- 17% in without cardiovascular disease (CVD)
- 19% with CVD
- 34% with coronary artery disease (p < 0.5)</p>
- Under-diagnosis of airflow limitation range: 60% 87%
 Soriano J, et al. High Prevalence of Undiagnosed airflow limitation in patients with CVD. CHEST 2010;137;2:333-340.
- Left ventricular (LV) structure and function measured by MRI in 2816 persons 45-84 years old
 - 10% increase in COPD linearly related to reduction in LV enddiastolic volume, stroke volume, cardiac output
 - Greater magnitude among current smokers

R Graham Barr, et al. Percent Emphysema, airflow obstruction and impaired left ventricular filling. NEJM. 2010;32:217-27.

COPD may be a risk factor for CVD
 Sin D, et al. COPD as a risk factor for CVD morbidity and mortality Proc Am Thorac Soc 2005;2(1):8-11.

Hospitalization and Death in COPD

- 2386 COPD patients 50% men, 71% smokers
 - Mean follow-up: 12 years
 - 22% had hospitalization for COPD
 - Risks for hospitalization: older age, CVD, asthma, low physical activity, severe COPD
- 60% died during follow-up
 - Risks for death: older age, CVD, diabetes, low physical activity, more severe COPD

J Garcia-Aymerich, et al. Physical activity reduces hospital admission and mortality in COPD: Thorax 2006;61;772-728

341 COPD patients followed for mean 1.1 year

- 92% men, 63% readmitted, 29% died during follow-up
- Readmission risk factors: low FEV₁, low PO₂, low physical activity, low quality of life

J Garcia-Aymerich, et al. Risk factors of readmission to hospital for a COPD exacerbation: Thorax 2003;58:100-105

Can We Reverse COPD?

BODE Index: Impacts survival and hospitalizations

- Body Mass Index ≥ 21
- Obstruction: > Forced Expiratory Volume in one second
- Dyspnea: < Medical Research Council dyspnea scale</p>
- Exercise: > 6 minute walk distance
- Pulmonary Rehabilitation improves dyspnea & exercise <u>http://content.nejm.org/cgi/content/abstract/350/10/1005</u>
- Rehabilitation to reverse muscle dysfunction
- Quitting smoking reduces mortality, loss of lung function
- Reduce hyperinflation exercise, bronchodilators
- Treat hypoxemia with oxygen
- Limit exacerbations with education and exercise
- Improve weight

GOLD Stages of Therapy

All stages: FEV ₁ /FVC < 70%	Smoking cessation; avoidance of risk factors; influenza vaccination
Stage I: Mild COPD FEV1 > 80%	Add short-acting bronchodilator when needed
Stage II: Moderate FEV1 >50 <80	Add regular treatment with one or more long-acting bronchodilators; add rehabilitation
Stage III: Severe FEV1 >30 <50	Add inhaled glucocorticosteroids if repeated exacerbations
Stage IV: Very Severe FEV1 >30	Add long-term oxygen if chronic respiratory failure; consider surgical treatments

Adapted from Global Initiative for Chronic Obstructive Lung Disease (GOLD) Executive Summary. Updated 2003. Available at: http://www.goldcopd.com.

Restrictive Ventilatory Defect

- Mycobacterium Tuberculosis
 - Pulmonary complications
 - Cavitary lesion, miliary TB
- Interstitial Lung Disease:
 - Inflammation leading to scaring
 - Pulmonary Fibrosis, scleroderma, etc.
- Chest wall abnormalities
 - Kyphosis, kyphoscoliosis

- Diagnosis: History and physical, Chest X ray,
 Pulmonary function test (PFT), Chest CT for interstitial lung disease
 Findings: Decreased forced vital capacity (FVC),
 Decreased total lung capacity (TLC) normal FEV₁ / FVC
- Management: disease-focused care
- Pulmonary Rehabilitation improves function, quality of life, dyspnea

Rationale for PR in Chronic Lung Disease

American Thoracic Society COPD Guidelines

www.thoracic.org/clinical/copd-guidelines/index.php

Quitting Smoking - Most Important To Prevent Onset and Progression of COPD

If exposure to noxious agents stops, disease progression slows

Fletcher et al. Br Med J. 1977;1:1645-1648. Used with permission from the BMJ Publishing Group.

Effect of Medications on COPD

Standards for the Diagnosis and Treatment of Patients with COPD: ATS / ERS Position Paper

	FEV ₁	SOB	QOL	Exacer- bations	Exer- cise	Side effect
Albuterol	Yes	Yes	NA	NA	Yes	Some
Ipratropium	Yes	Yes	No	Yes	Yes	Some
Long Acting Beta Agonists	Yes	Yes	Yes	Yes	Yes	Minimal
tiotropium	Yes	Yes	Yes	Yes	Yes	Minimal
Inhaled steroids	Yes	Yes	Yes	NA	NA	Some
Theophylline	Yes	Yes	Yes	Yes	Yes	Important

American Thoracic Society Documents

American Thoracic Society/European Respiratory Society Statement on Pulmonary Rehabilitation

Evidence-based, multidisciplinary, comprehensive program Chronic respiratory diseases Symptomatic, decreased daily activities Integrated into individualized treatment Designed to optimize functional status Increase participation Reduce healthcare costs Reduce symptoms Stabilizing or reversing systemic manifestations Nici, Garvey, et al ATS/ERS Statement on PR Am J Respir Crit Care Med V173. Pp 1390-413, 2006,

Pulmonary Rehabilitation

- Physician supervised program
 - Supervised exercise
 - Education disease self-management training
 - Outcome assessment
- Goal: Improvement in:
 - Functional capacity, long term exercise
 - Maximum potential in self care
 - Long term use of treatments
 - Quality of life
 - Reduce hospitalizations
- Chronic, stable, symptomatic lung disease
 Physically and mentally able to participate

Pulmonary Rehabilitation Setting

- Multidisciplinary Team:
 - Medical Director

- May include nurses, physical therapists, respiratory therapists, social workers, dietitians
- Progressive exercise: aerobic and resistance
 - 30 minutes of moderate intensity physical activity such as walking five or more days per week

Am Fam Physician 2008;77:8;1136-1138.

 Clinical monitoring: oxygen saturation, dyspnea, heart rate, blood pressure, blood glucose in diabetes
 Evaluate patient's progress related to rehabilitation
 Outcomes - pre and post Pulmonary Rehabilitation
 Objective, patient-centered outcomes
 Functional capacity, dyspnea, quality of life

Pulmonary Rehabilitation Education

Dyspnea control – pursed lip breathing Prevention, management of exacerbations Energy conservation – Activities of Daily Living Proper use of inhaled medications Control of anxiety, panic, depression Oxygen needs, safety, monitoring, portability Secretion clearance techniques, devices Nutrition counseling Home exercise program and guidelines Disease progression, end of life planning

Dyspnea Screening / Monitoring

MMRC Dyspnea Scale

- 0: I only get breathless with strenuous exercise
- 1: I get short of breath when hurrying on level ground or walking up a slight hill
- 2: On level ground, I walk slower than people of the same age because of breathlessness, or have to stop for breath when walking at my own pace
- 3: I stop for breath after walking about 100 yards or after a few minutes on level ground
- 4: I am too breathless to leave the house or I am breathless when dressing

Modified Borg Scale

- 0 No Breathlessness at all
- 1 Very Slight
- 2 Slight Breathlessness
- <u>3 Moderate</u>

Training Zone

- <u>4 Somewhat Severe</u>
 - 5 Severe Breathlessness
- **6**
- 7 Very severe breathlessness
- <mark>8</mark>
- 9 Very very severe
- 10 Maximum

Keep "shortness of breath" 3 – 4 with exercise

Quality of Life Questionnaires

St George's Respiratory Questionnaire (SGRQ)

sgrq@sgul.ac.uk ttp://www.healthstatus.sgul.ac.uk/downloads/sgrq_scoring_sheet.htm

- Chronic Respiratory Disease Questionnaire (CRQ) 1-877-836-9235, Fax: 905-540-8019 Email: orcip@mcmastr.ca
- Medical Outcomes Study Short Form 36 (SF-36) http://www.gualitymetric.com/WhatWeDo/GenericHealthSurveys/tabid/184/Default.aspx

Functional Capacity Testing

- 6 Minute Walk Test
 - Self-paced, reliable, correlates with VO₂ peak in moderate COPD <u>http://www.thoracic.org/statements/resources/pfet/sixminute.pdf</u>
- Incremental Shuttle Walk Test
 - Externally paced, reliable, correlates with VO₂ peak in mod COPD www.pulmonaryrehab.com.au/PDFs/ResourcesPatientAssessment_ISWT.doc
- Cardiopulmonary Exercise Test
 - Direct measure of O₂, CO₂, minute ventilation, tidal volume, respiratory rate on breath-by-breath basis ATS/ACCP Statement: Cardiopulmonary Exercise Testing (2003) and Lavoilette (2008).

Outcomes of Pulmonary Rehabilitation Randomized Controlled Trials

Increase in sub-maximal exercise^{1, 3, 4, 5, 7, 9} Improvement in dyspnea^{1, 2, 3, 4, 5} Improvement in health status^{4, 7, 8, 9} Fewer hospital days and primary care visits⁷ Enhanced psychological well being,^{10, 11} quality of life,^{10, 11} depression,⁷ anxiety^{7,13,14} cognitive function⁴

¹R Goldstein, et al. Lancet 1994; 344:1394-1397 ³ A Ries, Ann Intern Med 1995;122:823-832. ⁵ J Strijbos, et al. CHEST 1996;109:366-372 ⁷T Griffiths, et al Lancet 2000;355: 362-368 ⁹ T Troosters, et al. Am J Med 2000;109:207-212 ¹¹ Wempe J, Patient Educ Couns 2004; 52:237-241. ¹³ Paz-Diaz H, Am J Phys Med Rehabil 2007;86:30-36 ²J Reardon, et al. CHEST 1994;105:1046-1052.

- ⁴ P Wijkstra, et al. Eur Respir J 1996;9:104-110. ⁶ K Benndstrup, et al. Eur Respir J 1997;10:2801-2806:
- ⁸ J Finnerty, et al. CHEST 2001;119:1701-1710. ¹⁰ Devine, Patient Educ Couns 1996; 29:167-178.
- ¹² Emery C. Health Psychol 1998;17:232-240.
- 14 Kayahan B. Respiratory Med (2006)100, 1050-1057

Oxygen For Hypoxemia

- Oxygen improves survival, exercise capacity, sleep quality and cognitive performance in hypoxemia
- Therapeutic goal: keep SpO₂ > 90% during rest, sleep and exercise <u>http://www.thoracic.org/clinical/copd-guidelines/index.php</u>
- Promote portable oxygen systems for ambulation
- Address air travel with hypoxemia
 - Ambient oxygen concentration 21% at sea level
 Ambient oxygen concentration 15% in aircraft

Portable liquid O₂

Portable O₂ concentrators

Stationary concentrator

Clinical Resources

- Global Initiative for COPD (GOLD) http://www.goldcopd.com
- ACCP / AACVPR Evidence based guidelines http://chestjournal.chestpubs.org/content/131/5_suppl/4S.full.pdf+html
- American Thoracic Society / ERS PR statement

http://www.thoracic.org/statements/resources/respiratory-disease-adults/atserspr0606.pdf

- American Thoracic Society / ERS COPD Guidelines http://www.thoracic.org/sections/copd/index.html
- ATS Spriometry standards, interpretation, 6 MWT <u>http://www.thoracic.org/statements/index.php</u>
- National Lung Health Education Program: spirometry resources <u>http://www.nlhep.org/</u>
- Pulmonary Rehabilitation Tool Kit http://www.pulmonaryrehab.com.au/index.asp?page=63
- COPD Action plan

http://www.copdx.org.au/checklist/documents/copdactionplan.pdf

Patient Resources

- American Thoracic Society: thoracic.org/sections/education/ patient-education
- American College of Chest Physicians: <u>http://www.chestnet.org/patients/guides/</u>
- Travel: <u>aeromedix.com</u> breathineasy.com/
- Oxygen portableoxygen.org, homeoxygen.org
- Multi-lingual pulmonary information <u>http://www.european-lung-</u> <u>foundation.org/index.php?id=2114</u>
- Multilingual COPD information <u>ttp://www.nlm.nih.gov/medlineplus/languages/</u> <u>copdchronicobstructivepulmonarydisease.html</u>

Pulmonary Rehabilitation – Where East Meets West

Haeso cheonsik 'cough and dyspnea'

- Could be COPD, asthma, heart failure, other diseases
- Considered part of normal aging process

Kim DS, et al. Prevalence of COPD in Korea; a population-based spirometry survey. Am J Respir crit Care Med 2005; 172:842-847.

• COPD is not a well know term by public or medical community Shim Y. Epidemiological Survey of COPD and aphya-1 antitrypsin deficiency in Korea Resirology 2001;6:S9-11.

36% of severe – very severe COPD patients do not have a physician diagnosis of COPD Kim DS, et al. Prevalence of COPD in Korea; a population-based spirometry survey. Am J Respir crit Care Med 2005; 172:842-847.

Pulmonary Rehabilitation – Where East Meets West

- Need for multifaceted approach to improve disease prevention and effective management: Improve awareness of COPD prevalence Facilitate accurate diagnosis of COPD Health care policies to reduce risk factors for COPD Wider use of evidence based guidelines W C Tan, T :P Ng, COPD in Asia Where East Meets West CHEST vol 133. Issue 2. Feb 2008 What is My Role as a Clinician? Assess and monitor: Risk factor exposure Symptom, activity level and changes Accurate diagnosis based on spirometry
 - Medication adherence and inhaler technique
 - Exacerbations